
Differential conductance through a NINS junction on graphene

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 445220

(http://iopscience.iop.org/0953-8984/20/44/445220)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 16:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 445220 (5pp) doi:10.1088/0953-8984/20/44/445220

Differential conductance through a NINS
junction on graphene
Zhi-Yong Zhang

Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China

Received 7 July 2008, in final form 12 September 2008
Published 10 October 2008
Online at stacks.iop.org/JPhysCM/20/445220

Abstract
The differential conductance through a normal metal–insulator–normal metal–superconductor
(NINS) junction on graphene is obtained via numerical calculation of the Dirac–Bogoliubov–
de Gennes equation. A series of sub-gap peaks of differential conductance can be found no
matter whether the Andreev reflection is specular or standard. In the meantime, the differential
conductance displays an oscillatory behaviour as a function of the effective barrier strength even
if the Fermi surface mismatch is large. In the two limiting situations with the superconducting
gap much smaller or much larger than the Fermi energy, all of the oscillations are in the same
phase, and the number and positions of the sub-gap peaks are determined only by the distance
between the NI and NS interfaces. In the intermediate regime with the Andreev retro-reflection
crossing over to a specular one, however, a phase shift appears between any two different
oscillations. The number and positions of the sub-gap peaks are related not only to that distance
but also to the effective barrier strength.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent fabrication of graphene [1], a monatomic layer of
graphite with a honeycomb lattice structure, provides the
opportunity to employ its unusual low-energy electronic prop-
erties to the design of novel micro-electronic devices. Undoped
graphene has six discrete Fermi points, corresponding to the
corners of the hexagonal Brillouin zone, out of which only
two are inequivalent. In the vicinity of these two valleys,
the excitation spectrum obeys a Dirac-like Hamiltonian [2, 3],
which yields a linear energy dispersion instead of a parabolic
one. The electronic and hole states are interconnected, and
chirality, the projection of pseudo-spin on the direction of
motion, is conserved in the tunnelling process [4]. These
unusual low-energy electronic properties lead to the novel
transport behaviour in micro-electronic devices based on
graphene.

State-of-the-art fabrication technology can induce super-
conductivity in graphene via the proximity effect [5, 6]. It is of
theoretical interest and of technological importance to investi-
gate how the unusual low-energy electronic properties affect
charge transport under the influence of superconductivity.
Beenakker [7] found that in a normal metal–superconductor
(NS) junction on graphene, the Andreev reflection is not
always retro-reflection [8] but can be specular if the super-
conducting gap � is much larger than the Fermi energy EF of

the N region [9]. Bhattacharjee and Sengupta [10] found that
the conductance through a NIS junction on graphene, where
I, an ‘insulator’ layer, is modelled as a thin barrier, displays
an oscillatory behaviour as a function of the effective barrier
strength, although this I layer acts as a counterpart of the δ
potential for non-relativistic particles. The difference comes
from the quantum interference effect, which is permitted in
the ‘insulator’ layer due to the linear dispersion but prohibited
in the δ potential. The amplitude of these oscillations is
maximum for aligned Fermi surfaces of the N and S regions
and vanishes for a large Fermi surface mismatch. Linder and
Sudbø [11] also calculated the differential conductance through
a NIS junction on graphene, but in their model the ‘insulator’
layer is wide and the S region may have unconventional pairing
potential. A series of sub-gap differential conductance peaks
can be found for both s- and d-wave pairing because of the
quantum interference taking place in the ‘insulator’ layer.

Another typical structure in the study of the transport
properties of non-relativistic particles is a NINS junction with
I modelled as a δ function. The Andreev retro-reflection at
the NS interface and the normal specular reflection at the δ
function can construct a round-trip path, which results in a
series of sub-gap differential conductance peaks due to the
formation of Andreev bound states [12]. For a NINS junction
on graphene with I a thin ‘insulator’ layer, the round-trip path
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cannot be formed if Andreev reflection is specular. In a naive
viewpoint, the sub-gap differential conductance peaks can only
be found with � � EF. But even with specular Andreev
reflection, multiple scatterings still take place between the NS
and NI interfaces. Whether sub-gap differential conductance
peaks can be found, and if they can what their characteristics
are in the situations with � � EF and � � EF and in the
intermediate regime with the Andreev retro-reflection crossing
over to a specular one, are two questions that need to be
clarified. Multiple scatterings can also take place in the I layer
for relativistic particles. With the I layer moving away from
the NS interface, the multiple scatterings in the two regions
interplay with each other. How the quantum interference effect
in the whole structure influences the oscillatory behaviour
of differential conductance in the three different regimes is
another question needing to be clarified.

The purpose of the present work is to answer these
questions. Via numerical calculation of the Dirac–
Bogoliubov–de Gennes (DBdG) equation [7, 10, 11] we find
that, as expected, a series of sub-gap peaks of differential
conductance can be formed no matter whether the Andreev
reflection is specular or standard. In the meantime, the
differential conductance displays an oscillatory behaviour as
a function of the effective barrier strength even if the Fermi
surface mismatch is large. In the two limiting situations with
� � EF and � � EF, all of these oscillations are in the
same phase and the number and positions of sub-gap peaks
are determined only by the distance between the NI and NS
interfaces. In the intermediate regime, however, although all
of the oscillations still have a common period a phase shift can
be found between any two different oscillations. The number
and positions of the sub-gap peaks are related not only to that
distance but also to the effective barrier strength.

The organization of this paper is as follows. In section 2,
the theoretical model is presented. In section 3, the numerical
results are illustrated and discussed. A brief summary is given
in section 4.

2. Model and formulae

In the present paper we calculate the differential conductance
through a NINS junction formed on a graphene sheet,
which is assumed as the xy plane. The left half sheet
x < 0 is in the normal (N), whereas the right half sheet
x > 0 is covered by a superconducting electrode (S),
which induces superconductivity in the graphene sheet by
means of the proximity effect [5, 6]. Neglecting the self-
consistency of spatial distribution of the pair potential in the S
layer [7, 10, 11], we take the pair potential as �(�r) = ��(x)
with �(x) the Heaviside step function. The electrostatic
potentials in the left and right half sheets can be adjusted
independently by gate voltages or by doping, so that the
potential of the left half sheet has a difference U from that
of the right half one. The Fermi length in the former is λF =
2π h̄vF/EF, whereas it is λ′

F = 2π h̄vF/(EF + U) in the latter
with EF the Fermi energy. A thin ‘insulator’ layer (I), modelled
as a square potential barrier, extends from x = −(L + d) to
x = −L. This I layer separates the left half sheet into three

parts: the left N, I and central N regions. The effective barrier
strength is defined as χ = VBd/(h̄vF) with VB the barrier
height, which can be adjusted by another gate voltage or by
additional doping. Here, the barrier width d is much smaller
than λF.

In the absence of impurity scattering, such a NINS
junction on graphene can be described by the DBdG equation
as [7, 13](

Ĥ± − EF + V (�r) �(�r)
�∗(�r) EF − V (�r)− Ĥ±

)
�± = E�± (1)

with Ĥ± = −ih̄vF(σ̂x∂x ± σ̂y∂y). Here ± refers to the two
inequivalent valleys K and K ′, and vF ≈ 106 m s−1. The
Pauli matrices operate in the pseudo-spin space, corresponding
to the A and B atoms of honeycomb structures. V (�r) =
VB�(x + d + L)�(−x − L) − U�(x). The excitation
energy E is measured from the Fermi energy EF. The mean-
field description of superconductivity implicitly imposes a
restriction � � EF + U . It is satisfied when � � EF even if
U = 0, but it is also satisfied when� � EF only if� � U . In
the later situation, the specular Andreev reflection takes place
at the NS interface. In writing the above equation, the spin
index is omitted due to the spin degeneracy. Because of the
valley degeneracy [7, 14], it is sufficient to consider either one
of the two sets in the equation (1). Hereafter for clarity, only
Ĥ+ is considered and the subscript + is omitted.

When an electron with energy E is incident from the
left N region with an angle θ e, the total wavefunction
is a superposition of electronic and hole excitations due
to the Andreev reflection. In the left and central
N regions, the states of electronic and hole excitations
are: φe(θ e) = 1√

2
(1, eiθ e

, 0, 0)Teike cos θ ex and φh(θh) =
1√
2
(0, 0, 1,−eiθ h

)Teikh cos θ hx , where kν = (E ± EF)/(h̄vF) and

θν = sin−1(ky/kν) with the signs + and − corresponding
to ν = e and h, respectively. Here, ky = ke sin θ e, the
wavevector in the transverse direction, is conserved in the
tunnelling process. Due to the mirror symmetry with respect
to the xz plane, θ e can be restricted in [0, π/2]. In the
above states, a common factor eiky y is omitted for clarity. If
θ e > θ e

c = sin−1 |kh/ke| for |kh| < |ke|, the Andreev reflection
is forbidden. The total wavefunction in the left N region can be
written as

� = φe(θ e)+ rφe(θ̃ e)+ r Aφh(θ̃h), (2)

and it is

� = aeφe(θ e)+ ahφh(θh)+ beφe(θ̃ e)+ bhφh(θ̃h) (3)

in the central N region. Here, θ̃ ν = (π − |θν |)θν/|θν|.
In the I layer, the states of electronic and hole excitations

ϕν have the same forms as φν . The only difference is that
kν and θν are replaced by pν = (E ± (EF − V ))/(h̄vF)

and ην = sin−1(ky/pν), respectively. In this layer, the total
wavefunction is

� = ceϕe(ηe)+ chϕh(ηh)+ deϕe(η̃e)+ dhϕh(η̃h) (4)

with η̃ν = (π − |ην |)ην/|ην |.
2
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Figure 1. Schematic illustration of the reflection process in a NINS
junction when specular reflection (a) and retro-reflection (b) take
place at the NS interface. Here, red solid arrows correspond to the
movement of an electron and green dotted ones to a hole.

In the S region, the electron- and hole-like exci-
tations are given as ψe = (u, ueiζ e

, v, veiζ e
)Teiqe cos ζ ex

and ψh = (v, veiζ h
, u, ueiζ h

)Teiqh cos ζ hx , respectively,
where qν = (EF ± √

E2 −�2)/(h̄vF) with ζ ν =
sin−1[ky/qν]. The superconductor coherent factors u
and v are u = √[1 + E−1(E2 −�2)1/2]/2 and v =√[1 − E−1(E2 −�2)1/2]/2. Then in the S lead, the total
wavefunction is

� = teψe
s (ζ

e)+ thψh
s (π − ζ h). (5)

From the boundary condition, that is the continuity of
wavefunction � at the interfaces, all of the superposition
coefficients in the above four equations can be obtained
analytically. But this process is so tedious that we prefer to do a
numerical calculation. Because of the conservation of pseudo-
spin projected on the propagating direction, backscattering
is forbidden when an electron is normally incident into the
I layer [4]. This perfect transparency is a manifestation
of the Klein paradox [15] in condensed matter physics.
But in experiments, the angle-resolved transmissivity cannot
be measured easily, and what we are interested in is the
differential conductance. Under an external bias Vex, the
normalized zero-temperature differential conductance can be
written as [7, 10, 11, 16]:

G(Vex) =
∫ θ e

c

0
dθ e cos θ e

(
1 − |r |2 + |rA|2 cos θh

cos θ e

)
, (6)

where r and rA are both obtained at Vex.

3. Results and discussion

We first consider the situation with � � EF, then that
with � � EF. In the former Andreev retro-reflection takes
place, and in the latter the Andreev reflection is specular. The
intermediate regime with � ≈ EF is also considered, where
Andreev retro-reflection crosses over to a specular reflection.
In our numeric calculation, the superconducting gap � is set
as the energy unit,�d/(h̄vF) = 0.001 and �L/h̄vF = 2π .

Figure 2. (a) G–χ curves for Vex = 0 (black solid) and� (red
dashed). (b) G–Vex curves at χ = 0 (black solid), 0.13π (red dashed)
and 0.52π (blue dotted). These three χs are marked in (a) as filled
squares. The other parameters are EF/� = 100, U = 0,
�d/h̄vF = 0.001 and �L/h̄vF = 2π .

Figure 2 presents the results for � � EF, which are
obtained with U = 0 and EF/� = 100. Here, figure 2(a)
gives the G–χ curves for Vex = 0 (black solid) and Vex = �

(red dashed), and figure 2(b) plots the variations of G with the
external bias Vex for χ = 0 (black solid), 0.13π (red dashed)
and 0.52π (blue dotted). These χs are marked on the G(0)–
χ curve as filled squares. As we can see from figure 2(a),
G(0) and G(�) oscillate in the same phase with a period π ,
and their maximum values appear approximately at nπ . This
is in contrast to a NIS junction where the amplitude of these
oscillations vanishes at the gap edge with G(�) ≈ 2, The
small deviation from exact nπ comes from the fact that the
barrier width d taken in our numerical calculation is finite. The
positions of those maximum points are independent of L, the
distance between the I layer and the NS interface. Even with L
decreased to zero, the maximum values are still located at nπ .
Although this result is different from that of [10] it is consistent
with that of [11] and is reasonable from the physics, since at
χ = 0 the influence of the ‘insulator’ layer disappears. For
G(0) its maximum value reaches 2, and for G(�) it is a little
smaller than 2. These results are different from the tunnelling
of non-relativistic particles, where the differential conductance
is suppressed with the corresponding δ potential increased and
no oscillation can be found. In a NINS junction on graphene,
the oscillation of differential conductance comes mainly from
quantum interference in the I layer, but the contrast with a NIS
junction demonstrates the interplay of multiple scatterings in
the I layer and in the region between the NI and NS interfaces.

Although this multiple scattering effect cannot change the
period of those oscillations, it can affect the G–Vex curves.
As schematically illustrated in figure 1, in the situation with
� � EF, Andreev bound states are formed in a NINS
junction [12]. As a result, the G–Vex curves exhibit a series
of sub-gap peaks for any χ except χ = nπ , where the sub-
gap differential conductance is close to 2 and no peak can be
found. Although the peak values oscillate with χ , the number
and positions of these sub-gap peaks are independent with χ .
They are only related to L. That is, these characteristics are
only determined by the multiple scatterings between the NI
and NS interfaces. With the Andreev retro-reflection taking
place, the interference effects in the two different regions can

3
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be considered separately, and the differential conductance of
the whole structure is simply a multiplication of two factors.

Now we turn our attention to the situation with � � EF,
where the Andreev reflection is specular. These results are
presented in figures 3(a) and (b). Here, U/� = 100, so that
� is still much smaller than EF + U . In this situation, the
differential conductance still oscillates with χ except at Vex =
0, where G(0) is fixed as 2 (not presented in figure 3(a)). This
is entirely different from the results of a NIS junction where the
amplitude of those oscillations vanishes due to the large Fermi
surface mismatch [10]. In a NIS junction, a large Fermi surface
mismatch acts as an effective barrier which makes the presence
of an additional barrier irrelevant. As a result, the amplitude
of oscillations of differential conductance vanishes. Whereas
in a NINS junction, although the resulted effective barrier
changes the multiple scattering effect between the NI and NS
interfaces, quantum interference in the I layer still plays an
important role in charge transport. However, in the situation
with � � EF, the period of these oscillations is still π , and
at nπ they reach to their maximum values simultaneously.
The multiple scatterings between the NI and NS interfaces
cannot introduce phase shift between different oscillations. On
the other hand, under specular Andreev reflection, although
propagating modes and not Andreev bound states are formed in
a NINS junction [17], the multiple scatterings between the NI
and NS interfaces still lead to a series of sub-gap differential
conductance peaks which can be seen clearly from the G–
Vex curves illustrated in figure 3(b). The basic characteristics
of these peaks, such as the peak number and peak positions,
are only determined by L. All of these results look like
those obtained in the limit with � � EF: the differential
conductance is simply a multiplication of two factors.

Figures 3(c)–(f) illustrate the results for � ≈ EF, which
are also obtained with U/� = 100. The χs taken to obtain
the corresponding G–Vex curves in figures 3(b), (d) and (f)
are given in table 1, and are marked as filled squares in
figures 3(a), (c) and (e), respectively, where the variations
of G(0) and G(�) with χ are plotted. In the regime
with the Andreev retro-reflection crossing over to a specular
one, the differential conductance exhibits entirely different
properties from the other two situations. As a representative,
the results for EF/� = 0.1 are illustrated in figures 3(c)
and (d). In contrast to a NIS junction where the oscillation
amplitude vanishes under a large Fermi surface mismatch,
both the G(0)–χ and G(�)–χ curves oscillate with a period
π because of the interplay of multiple scatterings in the I
layer and in the region between the NI and NS interfaces.
This result is similar to the situation with � � EF, but
now the two oscillations are not in the same phase. For
the G(0)–χ curve, the maximum conductance can reach
a value close to 1.9, but these maximum points are not
located at nπ , where G(0) = 4/3. Only at the specific
positions deviating from nπ can G(0) reach its maximum
value, although at these points the transmission through an
isolated I layer does not reach resonance. Compared with
the G(0)–χ curve, a phase shift appears in the G(�)–χ
curve, and asymmetry can be found in this curve. These
results show that in the intermediate regime the interplay of

Figure 3. In the left column: G(0)–χ (black solid) and G(�)–χ
(red dashed) curves. In the right column: G–Vex curves at different
χs, which, marked as filled squares in the left column, are given in
table 1. EF/� � 1 ((a) and (b)), EF/� = 0.1 ((c) and (d)) and
EF/� = 1 ((e) and (f)) with the other parameters the same as in
figure 2.

Table 1. The χ values adopted to obtain the G–Vex curves in
figures 3(b), (d) and (f). Here, χ1 corresponds to the black solid
curves, χ2 to red dashed and χ3 to blue dotted.

EF/� χ1 χ2 χ3

� 1 0 0.15π 0.5π
0.1 0 0.25π 0.47π
1 0.05π 0.25π 0.59π

multiple scatterings in the I layer and in the region between
the NI and NS interfaces has a more complex effect on
the differential conductance. Furthermore, in the G–Vex

curves, a series of sub-gap peaks can be found if χ 	= nπ .
(Of course, at Vex = EF, G is zero since θ e

c = 0.) But now the
peak number and peak positions are related not only to L but
also to χ . In the intermediate regime, the interference effects in
the two different regions cannot be considered separately, and
the differential conductance of the whole structure is no longer
a simple multiplication of two factors.

To further clarify the role of Fermi surface mismatch on
charge transport of a NINS junction, the results for � =
EF = U/100 are presented in figures 3(e) and (f). For any
χ , G(�) = 0 (not presented in figure 3(e)), since at Vex = �,
θ e

c = 0. As in the junction with EF/� = 0.1 and U/� = 100,
the positions of maximum points of the G(0)–χ curve still
deviate from nπ , but now this deviation is small. In the
meantime, the phase shift between different G–χ curves also

4
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becomes small. With EF further increased, the phase shift
diminishes, so that at � � EF all of the G–χ curves oscillate
in the same phase and the maximum values appear at nπ . But
when U 	= 0, the maximum value of the G(0)–χ curve cannot
reach 2 because of the Fermi surface mismatch across the NS
interface. For example, at EF = U = 100�, this maximum
value can reach only about 1.62. The Fermi surface mismatch
only acts as an effective barrier at the NS interface, but the
interplay of multiple scatterings in the two different regions
still plays an important role. The phase shift between different
G–χ curves and the deviation of maximum points from nπ are
characteristics of the intermediate regime.

4. Summary

In summary, the differential conductance through a NINS
junction on graphene is obtained via numerical calculation of
the DBdG equation [7, 10, 11]. A series of sub-gap peaks of
differential conductance can be found no matter whether the
Andreev reflection is specular or standard. In the meantime, G
oscillates with χ even if the Fermi surface mismatch between
the N and S regions is large. In the two limiting situations
with � � EF and � � EF, all of the oscillations are in the
same phase, and the number and positions of those sub-gap
peaks are only determined by L. In the intermediate regime,
however, where the Andreev retro-reflection crosses over to a
specular one, a phase shift appears between any two different
oscillations. The number and positions of those sub-gap peaks
are related not only to L but also to χ .
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